ষষ্ঠ শ্রেণি (মাধ্যমিক) - গণিত - NCTB BOOK

প্রকৃতিতে কিছু গাছ দেখা যায় যাদের ডালপালা বা শাখা-প্রশাখা নেই। যেমন, সুপারি গাছ, তাল গাছ, নারকেল গাছ, খেজুর গাছ ইত্যাদি। আবার কিছু গাছপালা আছে যাদের অনেক ডালপালা বা শাখা-প্রশাখা আছে। যেমন: আম গাছ, জাম গাছ, মরিচ গাছ ইত্যাদি।

তোমরা হয়তো ভাবছ গাছের সাথে আবার উৎপাদকের কী সম্পর্ক!

ভেবে দেখ তো মরিচ গাছে মরিচ হয়, আম গাছে আম আর গোলাপ ফুলের গাছে গোলাপ ফুল। তাহলে মৌলিক উৎপাদকের গাছে ফুল হিসেবে কী থাকবে?

নিচের ছবিটা দেখলেই বুঝতে পারবে।

খেয়াল করলে দেখতে পাবে মৌলিক সংখ্যাগুলোকে হলুদ রঙের ফুল হিসাবে আঁকা হয়েছে। আচ্ছা ভেবে দেখ তো এখানে ৩ = ৩ বা ১ বা ২ = ২ বা ১ এভাবে কেন লেখা নাই ?

১ মৌলিক সংখ্যা কি না তোমরা কি জানো ?

আবার, ৯৬ সংখ্যাটির জন্য কিন্তু নিচের ছবির মতো করেও উৎপাদকের গাছ আঁকা যায়।

এবার, সবাই মিলে ৯৬ সংখ্যাটির জন্য আরও কত বিভিন্ন রকম উৎপাদক গাছ আঁকা যায় খুঁজে বের করো। 

এবারে লটারির মাধ্যমে প্রত্যেকে একটি করে স্বাভাবিক সংখ্যা বেছে নাও। লটারিতে পাওয়া সংখ্যাটির জন্য কত রকম উৎপাদক গাছ আকা যায় খুঁজে বের করো। সবগুলো উৎপাদক গাছ একটা পোস্টার কাগজে বা পুরাতন ক্যালেন্ডারে এঁকে তোমার শিক্ষক, সহপাঠী সবাইকে দেখাও। তোমার পছন্দমতো গাছ আঁকতে পারো শুধু মৌলিক সংখ্যাগুলো হলুদ রং দিয়ে আঁকবে। তোমাদের সবার উৎপাদক গাছ একসাথে সাজিয়ে বাগান তৈরি করে প্রদর্শনী করো।

এবার নিচের সংখ্যাগুলো দিয়ে উৎপাদকের গাছ তৈরি করো।

তবে তোমরা প্রয়োজনে নিচের ছবির মতো করে উপর থেকে নিচের দিকেও উৎপাদকের গাছ আঁকতে পারো। সেক্ষেত্রে কী সুবিধা হবে বলতে পারো? এই গাছের মতো ছবিগুলোকে ইংরেজিতে “Tree Diagram” বলা হয়ে থাকে।

চলো এবার ১২ এর মৌলিক উৎপাদকের গাছটি নিচের ছবিতে দেখি।

লক্ষ করো, এখানে ১২ এর উৎপাদকের গাছ থেকে শুধুমাত্র মৌলিক সংখ্যাগুলো নেওয়া হয়েছে।

এবার নিচের মৌলিক উৎপাদকের গাছগুলো পূরণ করো।

🧩গুণিতক ও গুণনীয়কের খেলা

এখন আমরা কোনো সংখ্যার গুণিতক ও গুণনীয়ক নিয়ে একটা মজার খেলা খেলব। তোমরা নিশ্চয়ই জানো কীভাবে কোনো সংখ্যার গুণিতক এবং গুণনীয়ক নির্ণয় করতে হয়। এখন আরেকটা মজার ব্যাপার বলি। “উৎপাদক আর গুণনীয়ক কিন্তু আলাদা কিছু নয়।”

তার মানে, তোমরা কোনো সংখ্যার গুণনীয়ক বের করার জন্য উৎপাদকের গাছ-এর ধারণা ব্যবহার করতে পারো।

🎮খেলার নিয়ম

■ প্রথমে ১ম সংখ্যা ও ২য় সংখ্যার মৌলিক উৎপাদকের গাছ আঁকো;

■ ১ম সংখ্যার সবগুলো মৌলিক উৎপাদক যদি ২য় সংখ্যার মধ্যে থাকে তাহলে, ১ম সংখ্যা ২য় সংখ্যার গুণনীয়ক এবং ২য় সংখ্যা ১ম সংখ্যার গুণিতক হবে;

■ আবার ২য় সংখ্যার সবগুলো মৌলিক উৎপাদক যদি ১ম সংখ্যার মধ্যে থাকে তাহলে; ২য় সংখ্যা ১ম সংখ্যার গুণনীয়ক এবং ১ম সংখ্যা ২য় সংখ্যার গুণিতক হবে।

নিচের ছবিগুলো দেখে আরও ভালোভাবে বুঝতে পারবে।

• এরপর / অথবা × চিহ্ন দিয়ে নিচের ছকটি পূরণ করো।

🎱গসাগু”র খেলা

তোমরা গসাগু নির্ণয়ের একাধিক পদ্ধতি সম্পর্কে পূর্বের শ্রেণিতে জেনেছ। নিচের পদ্ধতিটাও নিশ্চয়ই তোমাদের অজানা নয়।

“একটি সংখ্যার সবগুলো মৌলিক উৎপাদক যদি অন্য একটি সংখ্যার মধ্যে থাকে তাহলে ১ম সংখ্যা ২য় সংখ্যার গুণনীয়ক হবে।”

তাহলে দুইটি সংখ্যার সাধারণ গুণনীয়ক হবে এমন একটি সংখ্যা যার সবগুলো মৌলিক উৎপাদকই ঐ দুইটি সংখ্যার মৌলিক উৎপাদকের গাছে থাকবে।

এখন, গসাগু অর্থাৎ গরিষ্ঠ সাধারণ গুণনীয়ক হচ্ছে সবচেয়ে বড় সাধারণ গুণনীয়ক। সেক্ষেত্রে তোমরা দুইটি সংখ্যারই মৌলিক উৎপাদকের গাছে পাওয়া যাবে এমন সবগুলো মৌলিক উৎপাদক খুঁজে বের করলে তাদের গুণফলই হবে গসাগু। 

চাইলে চেষ্টা করে দেখতে পারো এই গুণফলের চেয়ে বড় কোন সংখ্যা নিলে সেটা দুইটি সংখ্যারই সাধারণ উৎপাদক হতে পারে কিনা?

এবার ভেবে দেখতো মৌলিক উৎপাদকের গাছের সাহায্যে কীভাবে গসাগু নির্ণয়ের খেলাটি খেলতে হবে?

🎱গসাগু’র খেলার নিয়ম:

■ দুইটি সংখ্যার মৌলিক উৎপাদকের গাছ আঁকো।

■ দুইটি সংখ্যার মৌলিক উৎপাদকের গাছেই আছে এমন মৌলিক উৎপাদকগুলো চিহ্নিত করো। এগুলো হচ্ছে ঐ সংখ্যা দুইটির সাধারণ মৌলিক উৎপাদক।

■ এবার সাধারণ মৌলিক উৎপাদকগুলোর গুণফলই হবে ঐ সংখ্যার গসাগু।

ছবিতে গসাগু”র খেলার মাধ্যমে ১৮ ও ১২ এর গসাগু নির্ণয় দেখে নাও।

পাশের দেখানো মৌলিক উৎপাদকের গাছের সাহায্যে গসাগু নির্ণয়ের পদ্ধতি এবং গসাগু খেলা অংশের শুরুতে দেখানো পদ্ধতির মধ্যে কোনো মিল খুঁজে পাচ্ছ কি?

নিচের ছবিটা দেখলে খুব সহজেই বুঝতে পারবে যে দুটি পদ্ধতি আসলে একই।

‘’১ মৌলিক উৎপাদকের গাছে না থাকলেও কিন্তু সব সংখ্যার উৎপাদক/গুণনীয়ক।''

যদি দুইটি সংখ্যার মধ্যে ১ ছাড়া অন্য কোনো সাধারণ গুণনীয়ক না থাকে অর্থাৎ তাদের গসাগু ১ হয় তাহলে সংখ্যা দুইটিকে আমরা সহমৌলিক সংখ্যা (Co-prime numbers) বলি।

যেমন: ৪ ও ৯ এর গসাগু ১। তাই ৪ ও ৯ পরস্পর সহমৌলিক।

করে দেখি

এবার গসাগু’র খেলার মাধ্যমে মৌলিক উৎপাদকের গাছের চিত্র (ডায়াগ্রাম) ব্যবহার করে সংখ্যাগুলোর গসাগু নির্ণয় করো।

১) ২৮, ২৪

২) ৩৫, ২৫, ১০৫

৩) ৪৫, ১৮, ৯৯

৪)২৮, ৪৮, ৭২

৫) ৩১, ৩২, ৩৪১

এবার গুণনীয়কের তালিকা তৈরি করে সংখ্যাগুলোর গসাগু নির্ণয় ও যাচাই করো।

ইউক্লিড পদ্ধতিতে ভাগ প্রক্রিয়ায় গসাগু নির্ণয়

ছবিতে গসাগু নির্ণয়

তোমরা দুইটি সংখ্যার গসাগু নির্ণয়ের দুইটি উপায় সম্পর্কে জেনেছ।

• প্রথম পদ্ধতি

➡️ সংখ্যা দুইটির সবগুলো গুণনীয়ক বা উৎপাদকের তালিকা তৈরি করো।

➡️ তালিকা থেকে সংখ্যা দুইটির সাধারণ উৎপাদকগুলো খুঁজে বের করো।

➡️ এবার সাধারণ উৎপাদকগুলোর মধ্যে সবচেয়ে বড় সংখ্যাটিই হবে ঐ সংখ্যাদুইটির গসাগু।

উদাহরণ

২০ এর গুণনীয়ক১, ২, ৪, ৫, ১০,২০
৩২ এর গুণনীয়ক১, ২, ৪, ৮, ১৬, ৩২

অর্থাৎ গসাগু = ৪

• দ্বিতীয় পদ্ধতি

➡️ সংখ্যা দুইটিকে মৌলিক উৎপাদক গাছের সাহায্যে মৌলিক উৎপাদকে বিশ্লেষণ করো।

➡️ সংখ্যা দুইটির সাধারণ মৌলিক উৎপাদকগুলো খুঁজে বের করো।।

➡️ এবার সাধারণ মৌলিক উৎপাদকগুলোর গুণফলই হবে ঐ সংখ্যা দুইটির গসাগু।

উপরের দুইটি পদ্ধতিতেই উৎপাদকের তালিকা তৈরি অথবা মৌলিক উৎপাদকে বিশ্লেষণের জন্য অনেকবার সংখ্যা দুইটিকে ভাগ করার প্রয়োজন হয়। আর সংখ্যা দুইটি অনেক বড় হলে সেক্ষেত্রে দুই পদ্ধতিতেই গসাগু নির্ণয় করতে বেশ সময় লাগবে।

এই গসাগু নির্ণয়ের কাজটা আরেকটু সহজ করার জন্য গণিতবিদ Euclid (300 B.C অর্থাৎ ৩০০ খ্রি. পূর্ব) অন্য একটি মজার পদ্ধতি খুঁজে পান। অবশ্য Nicomachus নামের আরও একজন গণিতবিদ এই গসাগু নির্ণয়ের পদ্ধতি জানতেন। পাশের ছবিটি দেখো।

এখন সেই মজার পদ্ধতিতেই ৪৪ ও ১৮ এর গসাগু নির্ণয় করা হবে।

■ প্রথমে স্কেলের সাহায্যে একটি ৪৪ সেমি দৈর্ঘ্য এবং ৫ সেমি প্রস্থের কাগজের স্ট্রিপ কেটে নাও।

■ এবার ১৮ সেমি দৈর্ঘ্য এবং ৫ সেমি প্রস্থের কয়েকটি কাগজের স্ট্রিপ কেটে নাও। (এক্ষেত্রে দৈর্ঘ্যের পরিমাপই গসাগু নির্ণয়ের জন্য গুরুত্বপূর্ণ। তাই প্রতিটি স্ট্রিপের প্রস্থ ৫ সেমি এর পরিবর্তে অন্য যেকোনো সুবিধাজনক পরিমাপ নিতে পারো। তবে সেক্ষেত্রে সবগুলো স্ট্রিপ একই প্রস্থবিশিষ্ট নিলে সুবিধা হবে।

■ এবার ৪৪ সেমি দৈর্ঘ্যের স্ট্রিপের পাশে ১৮ সেমি দৈর্ঘ্যের স্ট্রিপটি বসাও। ৪৪ সেমি দৈর্ঘ্য পূরণ হতে আরও ২৬ সেমি বাকি আছে।

■ এখন বলো তো সর্বোচ্চ কতগুলো ১৮ সেমি দৈর্ঘ্যের স্ট্রিপ বসানো যাবে যেন মোট দৈর্ঘ্য ৪৪ সেমি এর বেশি না হয়?

■ ছবিতে দেখতে পাচ্ছ দুইটি ১৮ সেমি দৈর্ঘ্যের স্ট্রিপ বসানোর পর বাকি থাকে ৮ সেমি। 

■ এবারে কয়েকটি ৮ সেমি দৈর্ঘ্যের স্ট্রিপ তৈরি করে একটি ১৮ সেমি দৈর্ঘ্যের স্ট্রিপের পাশে বসাও।

■ ছবিতে দেখতে পাচ্ছ দুইটি ৮ সেমি দৈর্ঘ্যের স্ট্রিপ বসানোর পর ১৮ সেমি দৈর্ঘ্যের স্ট্রিপ পূরণ করতে বাকি থাকে ২ সেমি।

■ এরপর কয়েকটি ২ সেমি দৈর্ঘ্যের স্ট্রিপ তৈরি করে একটি ৮ সেমি দৈর্ঘ্যের স্ট্রিপের পাশে বসাও।

■ ছবিতে দেখতে পাচ্ছ চারটি ২ সেমি দৈর্ঘ্যের স্ট্রিপ বসানোর পর ৮ সেমি দৈর্ঘ্যের স্ট্রিপ সম্পূর্ণ পূরণ হয়ে যাচ্ছে।

■ এবার আমাদের কাজ শেষ এবং সবশেষে ২ সেমি দৈর্ঘ্যের স্ট্রিপ দিয়ে আমরা ৮ সেমি দৈর্ঘ্যের একটা স্ট্রিপ সম্পূর্ণ করতে পেরেছি। কাজেই, ৪৪ এবং ১৮ এর গসাগু হবে ২।

কিন্তু কেন এই কাগজের স্ট্রিপ পূরণ করতে করতে আমরা গসাগু পেয়ে গেলাম সেটাও তো জানতে হবে। উত্তরটা লুকিয়ে আছে গুণিতকের ধারণার মধ্যে।

নিচের ছবিতে নিজেই দেখে নাও।

সবশেষে ২ সেমি দৈর্ঘ্যের স্ট্রিপ দিয়ে আমরা ৮ সেমি দৈর্ঘ্যের একটা স্ট্রিপ সম্পূর্ণ করতে পেরেছি। তাহলে, ২ কিন্তু ৮ এর গুণনীয়ক।

ছবি থেকে এটাও বোঝা যাচ্ছে, ২ কিন্তু ১৮ এবং ৪৪ দুইটি সংখ্যারই গুণনীয়ক।

তার মানে, ২ সংখ্যাটি যে ৪৪ ও ১৮ দুইটি সংখ্যার সাধারণ গুণনীয়ক সে ব্যাপারে কোনো সন্দেহ নেই।

এখন, শেষ প্রশ্ন থাকবে তোমাদের কাছে : 

২ সংখ্যাটি ৪৪ ও ১৮ এর সবচেয়ে বড় বা গরিষ্ঠ সাধারণ গুণনীয়ক সেটা কি উপরের পদ্ধতিতে ছবি থেকে প্রমাণ করা যায়? শুরুতে প্রত্যেকে আলাদা করে চিন্তা করে দেখো।

এরপর শিক্ষকের নির্দেশনা অনুসারে তোমার চিন্তা বা মতামত সবাইকে প্রদর্শন করো এবং দলগত আলোচনা ও কার্যক্রমের মাধ্যমে সবাই মিলে প্রমাণটি সম্পূর্ণ করো। ভাগ প্রক্রিয়ার সাথে ইউক্লিড পদ্ধতিতে গসাগু নির্ণয়ের একটিভিটির সম্পর্ক: