Summary
অভিকর্ষ কেন্দ্র এবং ভরকেন্দ্র:
বস্তুর আবহের কেন্দ্রের দিকে আকর্ষণ এবং ওজনের ধারণাগুলি আলোচনা করা হয়েছে। অভিকর্ষ কেন্দ্র বা ভারকেন্দ্র হলো সেই বিশেষ বিন্দু যেখানে বস্তুটির মোট ওজন প্রভাব ফেলে। বিভিন্ন কণার সমষ্টি থেকে উৎপন্ন বলগুলির লব্ধি হিসাব করে এই কেন্দ্র নির্ণয় করা হয়।
মহাকর্ষীয় ক্ষেত্র ও প্রাবল্য:
মহাকর্ষের ক্ষেত্র হলো বিভিন্ন জায়গায় বস্তু দ্বারা তৈরী আকর্ষণ বলের বিস্তার। মহাকর্ষীয় প্রাবল্য হলো সেই আকর্ষণ বল যা একক ভরের বস্তুতে প্রয়োগ হয়, এটি ভেক্টর রাশি। প্রাবল্য নির্ণয়ের সমীকরণে মার্কার বিস্তার অনুযায়ী গাণিতিক বিশ্লেষণ করা হয়।
মহাকর্ষীয় বিভব:
মহাকর্ষীয় বিভব হলো অসীম দূরত্ব থেকে কোন ভরকে নির্দিষ্ট স্থানে নিয়ে আসতে করা কাজের পরিমাণ। এটি সাধারণত ঋণাত্মক রাশি হিসেবে বিবেচিত হয়। বিভব পার্থক্য হলো একটি বিন্দু থেকে অন্য বিন্দুতে ভর স্থানান্তর করতে যে কাজ করা হয়।
প্রাবল্য এবং বিভবের সম্পর্ক:
মহাকর্ষীয় প্রাবল্য এবং বিভবের মধ্যে সম্পর্ক হলো দূরত্বের প্রতি বিভবের পরিবর্তনের হার। এটি বিভিন্ন বিন্দुओंের মধ্যে বিভব পার্থক্য দিয়ে মাপা হয়।
অভিকর্ষ কেন্দ্র :
আমরা জানি, কোন একটি বস্তু যে পরিমাণ বল দ্বারা পৃথিবীর কেন্দ্রের দিকে আকৃষ্ট হয়, তাকে বস্তুর ওজন বা ভার বলে।
বস্তুকে যেভাবেই রাখা হোক না কেন তার ওজন যে বিশেষ বিন্দুর মধ্য দিয়ে বস্তুর উপর সর্বদা ক্রিয়া করে ঐ বিন্দুকে বস্তুর অভিকর্ষ কেন্দ্র বলে। অভিকর্ষ কেন্দ্রের অপর নাম ভারকেন্দ্র।
মনে করি A একটি দৃঢ় বস্তু। তা কতকগুলো বস্তুকণার সমষ্টি। প্রতিটি কণাই অভিকর্ষ বল দ্বারা পৃথিবীর কেন্দ্রের দিকে আকৰ্ষিত হবে। এই সব বল মিলিত হয়ে একটি লব্ধি বল সৃষ্টি করবে। বস্তুটিকে ঘুরে ফিরে যেভাবেই রাখা হোক না কেন কণাগুলোর উপর পৃথিবীর আকর্ষণ বলের পরিমাণ, অভিমুখ ও ক্রিয়াবিন্দুর এবং সেই সঙ্গে ঐ বলগুলোর লন্দির পরিমাণ, অতিমুখ ও ক্রিয়াবিন্দুর কোন পরিবর্তন হবে না। এই লব্ধি বলই বস্তুর ওজন। [চিত্র ৭.১০]-এ ওজন বা বল বস্তুর 'G' বিন্দুর মধ্য দিয়ে ক্রিয়া করছে। এই বিন্দুই বস্তুটির অভিকর্ষ কেন্দ্র বা ভারকেন্দ্র।
ভরকেন্দ্র :
আমরা জানি একটি বস্তু অনেকগুলো বস্তুকণার সমষ্টি। বস্তুর কণাগুলোর সমস্ত ভরকে একটি মাত্র বিন্দুতে কেন্দ্ৰীভূত মনে করলে ঐ বিন্দুর মধ্য দিয়েই সমস্ত কণার উপর তাদের ভরের সমানুপাতিক ক্রিয়ারত সমান্তরাল বলসমূহের লন্ধি ক্রিয়া করে বলে বিবেচিত হয়। ঐ বিন্দুকে বস্তুর ভরকেন্দ্র বলে।
মনে করি : A একটি বস্তু। তা অনেকগুলো বস্তুকণার সমষ্টি। ধরি বস্তুকণাগুলোর ভর যথাক্রমে ,m1, m2, m3,……………. mn ইত্যাদি [চিত্র ৭.১১] সমস্ত ভরকে C বিন্দুতে সমবেত ধরা হলে ঐ ভরগুলোর উপর ক্লিয়ারত কণার ভরের সমানুপাতিক সমান্তরাল বলের লব্ধি C বিন্দুর মধ্য দিয়েই ক্রিয়া করবে। এই বিন্দুর নামই ভরকেন্দ্র।
গাণিতিক বিশ্লেষণের সাহায্যে কোনও তলে অবস্থিত বস্তুকণাসমূহের অভিকর্ষ কেন্দ্র নির্ণয় Determination of centre of gravity of particles in a plane by mathematical analysis
মনে করি A একটি বস্তু। এতে m1, m2, m3…….mn ভরবিশিষ্ট বস্তুকণা আছে। ধরি OX এবং OY সমকোণে অবস্থিত দুটি অক্ষ। এই অক্ষ দুটির সাপেক্ষে ধরি তাদের স্থানাংক যথাক্রমে (x1,y1 ), (x2 + y2), (x3, y3), (xn, yn) ইত্যাদি। মনে করি এদের ভারকেন্দ্র G বিন্দুতে অবস্থিত এবং এর স্থানাক () যেহেতু অবস্থিতির সঙ্গে ভারকেন্দ্রের রদ বদল হয় না, সেহেতু তলটি অনুভূমিক ধরা যেতে পারে। অতএব বস্তুকণাগুলোর ভার সমমুখী সমান্তরাল বল হবে এবং তারা উল্লম্বভাবে নিচের দিকে ক্রিয়া করবে। সংজ্ঞানুসারে G বিন্দুর মধ্য দিয়ে মোট ভার বা ওজন নিচের দিকে ক্রিয়া করবে। এখন Y-অক্ষ বরাবর ভারগুলোর মোমেন্টের গাণিতিক যোগফল ঐ অক্ষ বরাবর লম্বির মোমেন্টের সমান হবে।
(m1 g + m2 g + m3 g +.………+ mn g) = m1 gx1 + m2gx2+m3 gX3 +……..mn gxn
৭.১৪ ভরকেন্দ্র নির্ণয়
Determination of centre of mass
অসম অথবা সুষম বস্তুর ভারকেন্দ্র নিম্ন উপায়ে নির্ণয় করা যায় :
মনে করি একটি অসম ত্রিভুজাকৃতি পাতলা পাত ABC-এর ভারকেন্দ্র নির্ণয় করতে হবে। প্রথমে পাতটির যে কোন এক প্রান্ত, ধরা যাক, A-এ সুতা বেঁধে পাতটিকে ঝুলিয়ে আর একটি সুতায় একটি পাথরখণ্ড S বেঁধে ঐ একই প্রান্ত A হতে পাথরটিকে ঝুলিয়ে দেয়া হয় [চিত্র ৭.১৩]।
পাত ও পাথর খন্ডটির স্থিরাবস্থায় A হতে সুতা বরাবর পাতের উপর দিয়ে একটি সরলরেখা AD টানা হয়। অনুরূপভাবে পাতটিকে পর পর B ও C হতে ঝুলিয়ে পাতটির উপর দিয়ে সুতা বরাবর যথাক্রমে সরলরেখা BE ও CF টানা হয়। তাহলে, অঙ্কিত AD, BE ও CF-এর ছেদবিন্দু G-ই পাতটির ভারকেন্দ্র। কারণ স্থিরাবস্থায় সুতার টানের বিপরীতে বস্তুর ওজন ক্রিয়া করে এবং সুতাটি বস্তুর ভারকেন্দ্র দিয়ে যাবে। এখানে পাথরখণ্ডটি যে সুতায় ঝুলে থাকে তাকে ওলন সুতা এবং অঙ্কিত সরলরেখা গুলোকে ওলন রেখা বলা হয়।
৭:১৫ মহাকর্ষীয় ক্ষেত্র ও প্রাবল্য
Gravitational field and intensity
কোন বস্তুর চারদিকে যে স্থান জুড়ে তার আকর্ষণ বল অনুভূত হয়, সে স্থানকে উক্ত বস্তুর মহাকর্ষীয় ক্ষেত্র বলে।
মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে একক ভরের কোন বস্তু স্থাপন করলে তার উপর যে বল প্রযুক্ত হয়, তাকে ঐ ক্ষেত্রের দরুন ঐ বিন্দুর মহাকর্ষীয় আকর্ষণ বলে। এটা সাধারণত মহাকর্ষীয় প্রাবল্য (Intensity)নামে পরিচিত। মনে করি M ভরের একটি বস্তু আছে। এই বস্তুর ভরকেন্দ্র হতে দূরে অবস্থিত কোন বিন্দুতে মহাকর্ষীয় প্রাবল্য নির্ণয় করতে হবে।
নিউটনের মহাকর্ষীয় সূত্র হতে আমরা জানি, M ও m ভরের দুটি বস্তুর ভরকেন্দ্র পরস্পর হতে দূরে থাকলে তাদের মধ্যে আকর্ষণ বলের পরিমাণ =
এখন যদি m= 1 একক হয়, তবে
বল = = M ভর কর্তৃক একক ভরের উপর M ভর অভিমুখী প্রযুক্ত বল। এটাই মহাকর্ষীয় প্রাবল্য E,
অর্থাৎ মহাকর্ষীয় প্রাবল্য, (28)
উক্ত সমীকরণ হতে সহজেই বুঝা যায় যে, M যত বেশি হবে, প্রাবল্যও তত বাড়বে। আবার r যত বেশি হবে, প্রাবল্য তত কমবে।
মহাকর্ষীয় ক্ষেত্রের বিভিন্ন বিন্দুতে প্রাবল্য বিভিন্ন হবে।
মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে m ভরের একটি বস্তু রাখলে তার উপর ক্রিয়াশীল বল হবে,
যেহেতু বল একটি ভেক্টর রাশি, তাই মহাকর্ষীয় প্রাবল্য, একটি ভেক্টর রাশি। -এর দিক হবে -এর দিক বরাবর। অন্যভাবে বলা যায়, একক ভরের বস্তু যেদিকে বল লাভ করে -এর দিক সেদিকে হবে।
এম. কে. এস. ও আন্তর্জাতিক পদ্ধতিতে প্রাবল্যের একক নিউটন/কিলোগ্রাম (Nkg-1)।
৭'১৬. মহাকর্ষীয় বিভব
Gravitational potential
সংজ্ঞা : অসীম দূর হতে একক ভরের কোন বস্তুকে মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে আনতে যে পরিমাণ কাজ সাধিত হয়, তাকে ঐ বিন্দুর মহাকর্ষীয় বিভব বলে।
একে সাধারণত V দ্বারা প্রকাশ করা হয়।
উল্লেখ্য, দুটি বস্তুর মধ্যে আকর্ষণ বলই কাজ করে থাকে। বাইরের কোন বল বা শক্তির প্রয়োজন হয় না। সুতরাং মহাকর্ষীয় বিভবকে ঋণ রাশি দ্বারা প্রকাশ করা হয় অর্থাৎ মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে বিভব ঋণাত্মক এটা একটি স্কেলার রাশি।
এম. কে. এস. বা এস. আই. পদ্ধতিতে এর একক জুল/কিলোগ্রাম (Jkg-1)।
বিভব পার্থক্য (Potential difference) : একক ভরের কোন বস্তুকে মহাকর্ষীয় ক্ষেত্রের এক বিন্দু হতে অন্য বিন্দুতে আনতে যে পরিমাণ কাজ সাধিত হয়, তাকে ঐ বিন্দুর মধ্যে মহাকর্ষীয় বিভব পার্থক্য বলে।
আকর্ষণ বলের অভিমুখে সরণ হলে বিভব পার্থক্য ঋণাত্মক এবং আকর্ষণ বনের বিরুদ্ধে সরণ হলে বিভব পাৰ্থক্য ধনাত্মক হবে।
৭.১৭ বিন্দু ভরের দরুন মহাকর্ষীয় বিভব
Gravitational potential due to a point mass
আমরা জানি, অসীম দূরত্ব হতে একক ভরের কোন বস্তুকে মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে আনতে যে পরিমাণ কাজ সাধিত হয়, তাকে উক্ত বিন্দুর মহাকর্ষীয় বিভব বলে।
এখন বিন্দু ভরের দরুন মহাকর্ষীয় বিভবের সাধারণ সমীকরণ বের করা যাক।
মনে করি, O বিন্দুতে M ভরের একটি বিন্দু ভর বস্তু অবস্থিত [চিত্র ৭-১৪]। O হতে দূরে P একটি বিন্দু। P বিন্দুতে মহাকর্ষীয় বিভব বের করতে হবে।
P বিন্দুতে একক ভরের উপর O বিন্দু অভিমুখী প্রযুক্ত বল অর্থাৎ মহাকর্ষীয় প্রাবল্য = । এখন একক ভরকে সামান্য দূরত্ব dr নিয়ে যেতে কাজের পরিমাণ অর্থাৎ বিভব,
dv = বল x সরণ = প্রাবল্য x সরণ =
একক ভরকে অসীম দূরত্ব হতে P বিন্দুতে আনতে কাজের পরিমাণ অর্থাৎ P বিন্দুতে বিভব
বা,
বা,
এখানে ঋণচিহ্ন এই অর্থ প্রকাশ করে যে, বাহ্যিক কোন বল বা শক্তি দ্বারা কাজ সম্পন্ন হয়নি, মহাকর্ষীয় বলই কাজ সম্পন্ন করেছে।
৭.১৮ প্রাবল্য ও বিভব পার্থক্যের মধ্যে সম্পর্ক
Relation between intensity and potential
মহাকর্ষীয় প্রাবল্য এবং মহাকর্ষীয় বিভবের মধ্যে সম্পর্ক স্থাপন করতে গিয়ে ধরি, A ও B মহাকর্ষীয় ক্ষেত্রে অবস্থিত কাছাকাছি দুটি বিন্দু [চিত্র ৭.১৫]। মনে করি এদের মধ্যবর্তী দূরত্ব । A বিন্দুর বিভব = VA এবং B বিন্দুর বিভব = VB। যেহেতু A ও B বিন্দু দুটি মহাকর্ষীয় ক্ষেত্রে কাছাকাছি অবস্থিত, সেহেতু বিন্দু দুটির মহাকর্ষীয় প্রাবল্য সমান ধরে নেয়া হয়। মনে করি এই প্রাবল্য = F
এখন, একক ভরের কোন বস্তুকে B বিন্দু হতে A বিন্দুতে আনতে কাজের পরিমাণ = প্রাবল্য × দূরত্ব
= F× AB = F×r
এটাই হল A বিন্দু এবং B বিন্দুর বিভব পার্থক্য অর্থাৎ (VA – VB)
F × AB=VA -VB
বা,
অর্থাৎ, দূরত্ব সাপেক্ষে বিভবের পরিবর্তনের হারকে প্রাবল্য বলে। ক্ষেত্রের অভিমুখে সরণ AB = dr হলে এবং A বিন্দুর বিভব V ও B বিন্দুর বিভব (V + dV) হলে, VA- VB =-dV
এটাই প্রাবল্য এবং বিভবের মধ্যে সম্পর্ক।
Read more